12.1 The Periodic Table: an overview

1. a. A 'cell' of the Periodic table is shown below.

48 Cd 112

	112	
	i. What does 48 <mark>represe</mark> nt	[1]
	ii. What does 112 represent	[1]
	b. Complete these se <mark>ntences</mark> about the Periodic Table.	
	i. The elements in the Periodic Table are arranged in order of increasing	
		[1]
	ii. The groups are numberedto	[1]
	iii. The period number tells you the number of	
	in an atom.	[1]
	iv. The outer shell electrons in an atom are called	[1]
2.	. Explain why Group VIII elements are unreactive.	
_		
3.	. Describe the position of metals and non-metals in the Periodic Table both across a period and down	
4.	. Both hydrogen and Group I elements have one electron in their outer shell.	
	Why is hydrogen not placed in Group I in the Periodic Table?	
		[2]
M.		
	5. Use textbooks or the internet to describe:	
	 a. how the structure of the Group V elements changes down the group in terms of being metal or non-metals 	s [4]
	b. how the type of oxides formed by Group ${f V}$ elements changes down the group.	[4]

Extension

12.2 Group I: the alkali metals

1. The table shows some properties of some Group I metals.

Group I metal	Density in g/cm³	Melting point / °C	Metallic radius / nm	Observations when the metal reacts with water
lithium	0.53	181	0.157	Moves over the surface very slowly
				Fizzes gently
				Does not mel <mark>t or go i</mark> nto a ball
				Does not burst into flame
sodium	0.97	98	0.191	
potassium	0.86		0.235	Moves over s <mark>urface v</mark> ery rapidly
				Fizzes very ra <mark>pidly</mark>
				Melts and go <mark>es into a</mark> ball then bursts into
				flame
				Slight 'pop' when reaction near the end
rubidium	1.53	39		

a. Complete the table by writing in

	i.	The observations in the last column for sodium and rubidium.	[6]
	ii.	A prediction for the melting point of potassium and the metallic radius of rubidium.	[2]
	b. Ca	esium is below rubidium in the Periodic Table. Predict a value for the density of caesium.	
			[1]
2.	Explai	n what happens in terms of electron transfer when sodium reacts with chlorine.	
			[4]

Extension

3. Use textbooks or the internet to find out why it is easier to remove the outer electron from a potassium atom than it is to remove the outer electron from a sodium atom.

[5]

12.3 Group VII: the halogens

1. The table shows some properties of fluorine, chlorine, bromine and iodine.

Halogen	Melting point / Boiling point / °C °C		State at -40 °C	Colour	Atomic radius / nm
fluorine	-220	-188			
chlorine	-1 <mark>01</mark>	-35			
bromine	-7	59			
iodine	114	184			

	10	dine	114	184						
a. What is the trend in the melting points of the halogens?								[1		
	b.	Use the va		ng and boiling poi						
	c.	Complete	the fifth <mark>column</mark>	to show the colou	rs of the halog	gens at room	temperatu	re.		[4
	d.	Draw an a	errow in the sixth	column to show th	he trend in at	omic radius (s	maller \rightarrow	larger).		[1
2.	a.	Complete	these sentences	about the displace	m <mark>ent react</mark> ior	s of halogens	usi <mark>ng</mark> wo	rds from th	e list.	
		bromi	ne chlorine	colourless	halide	halogen	less	more	orange	
		When aqu	eous	is adde	ed to a		solutio	n of potass	ium	
		bromide, t	he solution turns	i	because			has been o	displaced.	
		This is bec	ause a	react	ive		displaces	a		
		reactive ha	alogen from an a	queous solution of	its					[8
	b.		ıld you observe v olain these obser	when an aqueous so vations.	olution of bro	mine is added	l to an aqı	ieous solut	ion of potas	sium
		•••••								
3	3. 1	Write ionic	equations for:							********
		a. the read	ction of aqueous	chlorine with aque	ous magnesi	um iodide				[2]
	ı	b. the read	ction of aqueous	bromine with aque	eous potassiu	m astatide, KA	At.			[2]

Extension

12.4 More about the trends

1. The table shows some information about some of the elements in Period 3.

Element	Na	Mg	Al	Si	Р	S	Cl
Electronic structure	2,8,1						
Melting point / °C	98	649	660	1410	590	119	-101
Formula of typical	NaCl	MgCl ₂	AlCI ₃	SiCl ₄	PCl ₃	H ₂ S	HCI
compounds	Na ₂ O	MgO		SiH ₄	PH ₃		

Valency in compound	1	2	3	4	3	2	1

Va	lency in compound	1	2	3	4	3	2	1
a.	Complete the second line of	<mark>of t</mark> he table to	show the e	lectronic stru	uctures.			[1]
b.	Complete the fourth line of	the table to	show the fo	rmulae of th	e three oxic	les.		[3]
c.	i. Describe how the meltin	g points of t	he elements	change acro	ss the peric	d.		
		• • • • • • • • • • • • • • • • • • • •						[2]
	ii. What type of structure	<mark>s a</mark> re Na, Mg	, and Al?					
								[2]
	iii. Explain in terms of stru	i <mark>ct</mark> ure and bo	onding why	on has the high	ghest meltin	g point in t	nis period.	
								[2]
	iv. Explain in terms of stru	acture and bo	onding why	the melting p	ooints P, S, a	nd Cl are re	latively low.	
								[2]
Ph	osphorus also forms a chlor	ide with the	formula, PCI	5.				
ā.	Deduce the valency of the	phosphorus i	n this comp	ound				[1]
b.	Deduce the formula of the	oxide of pho	sphorus wh	ich has the sa	ame valency	as the pho	sphorus in PCI	,
								[1]
3.	Explain why the reactivity o	f the metals	decreases fr	om sodium t	o aluminiur	n.		[3]

Extension

2.

12.5 The transition elements

1. The boxes below show the properties of five non-transition elements and of five transition elements. The boxes are muddled up. (M = metal)

A Melting point 1890 °C

Forms a chloride of formula MCI, only

C Forms chlorides which are pink and green

Density 7.87 g/cm³

Forms chloride of type MCl₂, MCl₃, and MCl₄

Forms a colourless chloride

G A compound of M is a good catalyst

Melting point 725 °C

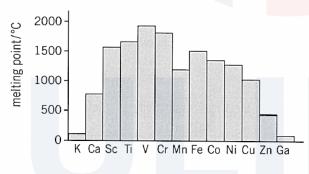
Density 0.97 g/cm³

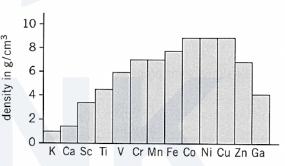
Compounds of M show no catalytic activity

a. Which letters represent the properties of transition elements?

.....[3]

b. Write the formulae of the transition element ions in the following compounds.


i. Ag,0<mark>.....</mark>.....


ii. CuSO₄[1]

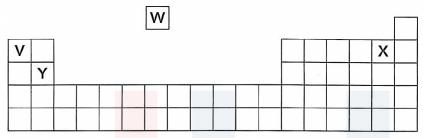
Give two other typical properties of transition elements which are not mentioned above.

[2]

2. The bar charts show the melting point and densities of some metals in Period 3.

a. What information in the bar charts suggests that calcium is not a transition element?

b. What is the pattern in the density of the metals across Period 3?


Extension

3. Zinc is in the central block of the Periodic Table. Use textbooks and the internet to find out about the properties of zinc which suggest that it not a transition element.

[4]

Exam-style Questions (Chapter 12)

2. The figure shows an outline of the Periodic Table with certain elements marked.

Which combination of the elements V, W, X or Y in the table is a metaland a non-metal?

	Non-metal	Metal
Α	Υ	V
В	Υ	X
С	W	X
D	W	V

[1]

3. The reactivity of elements within a group in the Periodic Table changes with their position in the group. Which combination in the table shows the order of increasing reactivity of elements in Group I and Group VII?

	Group I	Group VII
А	Cs → Li	F→I
В	Li → Cs	I → F
С	Li → Cs	F→I
D	Cs → Li	I→F

[1]

3. The table shows part of two groups of the Periodic Table.

Group I	Group VII
lithium, Li	
sodium, Na	chlorine, Cl
potassium, K	bromine, Br
	iodine, I

Choose from the elements given:

a a solid Group VII element

[1]

b the Group I element with the lowest density

[1]

c an element that is a liquid at room temperature

[1]

d th	ne two elements that would react most violently with each other
	[2]
	[Total: 5]
4.	A list of statements about elements of the Periodic Table is given below. State whether each of the following statements is true or false .
	a Elements are arranged in order of their mass numbers. [1]
	b All elements in Group VIII, the noble gases, have eight electrons in their outer shell. [1]
	c Transition elements have high densities. [1]
	d Transition elements are all metals.
	e Elements in the same period of the Periodic Table have the same number of electron shells.
5.	[1] [Total: 5] a Manganese is an important transition metal. Information about three manganese compounds is given below. • Manganese(II) sulfate is a pale pink crystalline solid. • Manganese(IV) oxide is a black solid which speeds up the decomposition of hydrogen peroxide. • Manganese(VII) oxide is a purple liquid.Which three characteristic properties of transition metals are shown in this information?
	[3]
	b Chromium forms three different metal oxides:
	chromium(II) oxide, CrO
	chromium(III) oxide, Cr ₂ O ₃
	chromium(VI) oxide, CrO₃
	CrO is a basic oxide, while CrO ₃ dissolves in water to form a strong acid. What does this tell you about the type of bonding present in these two oxides?
	[2]
	c Cr₂O₂ has similar bonding to aluminium oxide. Al₂O₂. What type of oxide is it likely to be?

117

[1]

[Total: 6]

<u>Self-reflection:</u>	
How was I doing for this parts?	
The parts I have confidence is/are	
The part I still confused is/are	
Did I achieve my goal that I set last time? If not, why? If so, what are the reasons behind?	
One thing that I need to improve?	
My objective of my next topic learning?	科数音
My plan to achieve my objective are:	